|
|
1 | (64) |
|
|
2 | (7) |
|
|
9 | (8) |
|
|
17 | (6) |
|
|
23 | (6) |
|
|
29 | (8) |
|
Powers, Polynomials, and Rational Functions |
|
|
37 | (7) |
|
Introduction to Continuity |
|
|
44 | (4) |
|
|
48 | (17) |
|
|
58 | (4) |
|
|
62 | (2) |
|
|
64 | (1) |
|
Key Concept: The Derivative |
|
|
65 | (44) |
|
|
66 | (6) |
|
The Derivative at a Point |
|
|
72 | (8) |
|
|
80 | (8) |
|
Interpretations of the Derivative |
|
|
88 | (5) |
|
|
93 | (6) |
|
|
99 | (10) |
|
|
103 | (3) |
|
|
106 | (1) |
|
|
107 | (2) |
|
Short-Cuts to Differentiation |
|
|
109 | (56) |
|
|
110 | (7) |
|
|
117 | (4) |
|
The Product and Quotient Rules |
|
|
121 | (6) |
|
|
127 | (6) |
|
The Trigonometric Functions |
|
|
133 | (5) |
|
The Chain Rule and Inverse Functions |
|
|
138 | (5) |
|
|
143 | (3) |
|
|
146 | (4) |
|
Linear Approximation and the Derivative |
|
|
150 | (5) |
|
Theorems About Differentiable Functions |
|
|
155 | (10) |
|
|
159 | (4) |
|
|
163 | (1) |
|
|
164 | (1) |
|
|
165 | (74) |
|
Using First and Second Derivatives |
|
|
166 | (9) |
|
|
175 | (6) |
|
|
181 | (9) |
|
Applications to Marginality |
|
|
190 | (8) |
|
Optimization and Modeling |
|
|
198 | (8) |
|
|
206 | (8) |
|
L'Hopital's Rule, Growth, and Dominance |
|
|
214 | (5) |
|
|
219 | (20) |
|
|
229 | (5) |
|
|
234 | (1) |
|
|
235 | (4) |
|
Key Concept: The Definite Integral |
|
|
239 | (42) |
|
How Do We Measure Distance Traveled? |
|
|
240 | (8) |
|
|
248 | (7) |
|
The Fundamental Theorem and Interpretations |
|
|
255 | (9) |
|
Theorems About Definite Integrals |
|
|
264 | (17) |
|
|
272 | (6) |
|
|
278 | (1) |
|
|
279 | (2) |
|
Constructing Antiderivatives |
|
|
281 | (30) |
|
Antiderivatives Graphically and Numerically |
|
|
282 | (6) |
|
Constructing Antiderivatives Analytically |
|
|
288 | (5) |
|
|
293 | (6) |
|
Second Fundamental Theorem of Calculus |
|
|
299 | (4) |
|
|
303 | (8) |
|
|
306 | (3) |
|
|
309 | (1) |
|
|
310 | (1) |
|
|
311 | (56) |
|
Integration by Substitution |
|
|
312 | (8) |
|
|
320 | (6) |
|
|
326 | (5) |
|
Algebraic Identities and Trigonometric Substitutions |
|
|
331 | (8) |
|
Approximating Definite Integrals |
|
|
339 | (5) |
|
Approximation Errors and Simpson's Rule |
|
|
344 | (4) |
|
|
348 | (8) |
|
Comparison of Improper Integrals |
|
|
356 | (11) |
|
|
361 | (3) |
|
|
364 | (1) |
|
|
365 | (2) |
|
Using the Definite Integral |
|
|
367 | (70) |
|
|
368 | (6) |
|
|
374 | (8) |
|
Area and Arc Length in Polar Coordinates |
|
|
382 | (8) |
|
Density and Center of Mass |
|
|
390 | (9) |
|
|
399 | (9) |
|
Applications to Economics |
|
|
408 | (6) |
|
|
414 | (7) |
|
Probability, Mean, and Median |
|
|
421 | (16) |
|
|
428 | (5) |
|
|
433 | (2) |
|
|
435 | (2) |
|
|
437 | (40) |
|
|
438 | (6) |
|
|
444 | (6) |
|
|
450 | (5) |
|
|
455 | (8) |
|
Power Series and Interval of Convergence |
|
|
463 | (14) |
|
|
471 | (3) |
|
|
474 | (1) |
|
|
475 | (2) |
|
Approximating Functions Using Series |
|
|
477 | (44) |
|
|
478 | (7) |
|
|
485 | (5) |
|
Finding and Using Taylor Series |
|
|
490 | (7) |
|
The Error in Taylor Polynomial Approximations |
|
|
497 | (5) |
|
|
502 | (19) |
|
|
514 | (3) |
|
|
517 | (1) |
|
|
518 | (3) |
|
|
521 | (82) |
|
What is a Differential Equation? |
|
|
522 | (4) |
|
|
526 | (6) |
|
|
532 | (3) |
|
|
535 | (5) |
|
|
540 | (9) |
|
Applications and Modeling |
|
|
549 | (9) |
|
Models of Population Growth |
|
|
558 | (8) |
|
Systems of Differential Equations |
|
|
566 | (9) |
|
Analyzing the Phase Plane |
|
|
575 | (5) |
|
Second-Order Differential Equations: Oscillations |
|
|
580 | (7) |
|
Linear Second-Order Differential Equations |
|
|
587 | (16) |
|
|
595 | (4) |
|
|
599 | (1) |
|
|
600 | (3) |
|
|
603 | (20) |
|
A Roots, Accuracy, and Bounds |
|
|
604 | (8) |
|
|
612 | (7) |
|
|
619 | (4) |
|
|
623 | (11) |
|
|
624 | (10) |
Answers to Odd Numbered Problems |
|
634 | (31) |
Index |
|
665 | |