
Catalytic Air Pollution Control Commercial Technology
by Heck, Ronald M.; Farrauto, Robert J.; Gulati, Suresh T.Buy New
Rent Textbook
Used Textbook
We're Sorry
Sold Out
eTextbook
We're Sorry
Not Available
How Marketplace Works:
- This item is offered by an independent seller and not shipped from our warehouse
- Item details like edition and cover design may differ from our description; see seller's comments before ordering.
- Sellers much confirm and ship within two business days; otherwise, the order will be cancelled and refunded.
- Marketplace purchases cannot be returned to eCampus.com. Contact the seller directly for inquiries; if no response within two days, contact customer service.
- Additional shipping costs apply to Marketplace purchases. Review shipping costs at checkout.
Summary
Author Biography
Ronald M. Heck, PHD, is President of RMH Consulting, where he specializes in consultation on environmental catalysis for auto, diesel, and stationary sources; general catalysis; fuel cells; reaction engineering; combustion technology; and chemical engineering. Previously, Dr. Heck was a Research Manager responsible for developing new catalyst technology for Engelhard Corporation's worldwide customers in environmental catalysis.
Robert J. Farrauto, PHD, is a Research Fellow at BASF Catalysts and Adjunct Professor in the Earth and Environmental Engineering Department of Columbia University in the City of New York, where he teaches courses in catalysis and supervises graduate student research. His responsibilities at BASF Catalysts include the development of advanced catalysts for the hydrogen economy. He has worked extensively in the development of catalysts for the environmental, petroleum, and chemical industries.
Suresh T. Gulati, PHD, is a Consultant to the Science and Technology Division of Corning. He has also been a research fellow with Corning, specializing in the behavior of brittle materials. Dr. Gulati has many years of experience working with automotive substrates, with an emphasis on their design and durability for diesel and passenger car applications.
Table of Contents
Preface | p. xiii |
Acknowledgments | p. xvii |
Acknowledgments, First Edition | p. xix |
Acknowledgments, Second Edition | p. xxi |
Fundamentals | p. 1 |
Catalyst Fundamentals | p. 3 |
Introduction | p. 3 |
Catalyzed Versus Noncatalyzed Reactions | p. 3 |
Catalytic Components | p. 13 |
Selectivity | p. 14 |
Promoters and their Effect on Activity and Selectivity | p. 15 |
Dispersed Model for Catalytic Component on Carrier: Pt on Al2O3 | p. 16 |
Chemical and Physical Steps in Heterogeneous Catalysis | p. 18 |
Practical Significance of Knowing the Rate-Limiting Step | p. 21 |
References | p. 22 |
Questions | p. 23 |
The Preparation of Catalytic Materials: Carriers, Active Components, and Monolithic Substrates | p. 24 |
Introduction | p. 24 |
Carriers | p. 24 |
Making the Finished Catalyst | p. 30 |
Nomenclature for Dispersed Catalysts | p. 32 |
Monolithic Materials as Catalyst Substrates | p. 32 |
Preparing Monolithic Catalysts | p. 36 |
Catalytic Monoliths | p. 37 |
Catalyzed Monolith Nomenclature | p. 38 |
Precious Metal Recovery from Monolithic Catalysts | p. 38 |
References | p. 38 |
Questions | p. 40 |
Catalyst Characterization | p. 41 |
Introduction | p. 41 |
Physical Properties of Catalysts | p. 42 |
Chemical and Physical Morphology Structures of Catalytic Materials | p. 48 |
Techniques for Fundamental Studies | p. 60 |
References | p. 61 |
Questions | p. 62 |
Monolithic Reactors for Environmental Catalysis | p. 63 |
Introduction | p. 63 |
Chemical Kinetic Control | p. 63 |
The Arrhenius Equation and Reaction Parameters | p. 66 |
Bulk Mass Transfer | p. 69 |
Reactor Bed Pressure Drop | p. 74 |
Summary | p. 76 |
References | p. 76 |
Questions | p. 77 |
Catalyst Deactivation | p. 79 |
Introduction | p. 79 |
Thermally Induced Deactivation | p. 79 |
Poisoning | p. 88 |
Washcoat Loss | p. 94 |
General Comments on Deactivation Diagnostics in Monolithic Catalysts for Environmental Applications | p. 95 |
References | p. 97 |
Questions | p. 98 |
Mobile Source | p. 101 |
Automotive Catalyst | p. 103 |
Emissions and Regulations | p. 103 |
The Catalytic Reactions for Pollution Abatement | p. 106 |
The Physical Structure of the Catalytic Converter | p. 107 |
First-Generation Converters: Oxidation Catalyst (1976-1979) | p. 114 |
NOx, CO and HC Reduction: The Second Generation: The Three-Way Catalyst (1979-1986) | p. 118 |
Vehicle Test Procedures (U.S., European, and Japanese) | p. 123 |
NOx, CO, and HC Reduction: The Third Generation (1986-1992) | p. 128 |
Palladium TWC Catalyst: The Fourth Generation (Mid-1990s) | p. 136 |
Low-Emission Catalyst Technologies | p. 138 |
Modern TWC Technologies for the 2000s | p. 146 |
Toward a Zero-Emission Stoichiometric Spark-Ignited Vehicle | p. 148 |
Engineered Catalyst Design | p. 153 |
Lean-Burn Spark-Ignited Gasoline Engine | p. 157 |
References | p. 163 |
Questions | p. 174 |
Automotive Substrates | p. 176 |
Introduction to Ceramic Substrates | p. 176 |
Requirements for Substrates | p. 178 |
Design/Sizing of Substrates | p. 180 |
Physical Properties of Substrates | p. 185 |
Physical Durability | p. 194 |
Advances in Substrates | p. 207 |
Commercial Applications | p. 222 |
Summary | p. 229 |
References | p. 230 |
Questions | p. 236 |
Diesel Engine Emissions | p. 238 |
Introduction | p. 238 |
Worldwide Diesel Emission Standards | p. 241 |
NOx-Particulate Trade-Off | p. 245 |
Analytical Procedures for Particulates | p. 245 |
Particulate Removal | p. 246 |
NOx Reduction Technologies | p. 263 |
2007 Commercial System Designs (PM Removal Only) | p. 272 |
2010 Commercial System Approaches under Development (PM and NOx Removal) | p. 275 |
Retrofit and Off-Highway | p. 281 |
Natural Gas Engines | p. 282 |
References | p. 283 |
Questions | p. 292 |
Diesel Catalyst Supports and Particulate Filters | p. 295 |
Introduction | p. 295 |
Health Effects of Diesel Particulate Emissions | p. 298 |
Diesel Oxidation Catalyst Supports | p. 298 |
Design/Sizing of a Diesel Particulate Filter | p. 302 |
Regeneration Techniques | p. 313 |
Physical Properties and Durability | p. 319 |
Advances in Diesel Filters | p. 324 |
Applications | p. 340 |
Summary | p. 350 |
References | p. 352 |
Questions | p. 355 |
Ozone Abatement within Jet Aircraft | p. 357 |
Introduction | p. 357 |
Ozone Abatement | p. 358 |
Deactivation | p. 363 |
Analysis of In-Flight Samples | p. 365 |
New Technology | p. 371 |
References | p. 372 |
Questions | p. 373 |
Stationary Sources | p. 375 |
Volatile Organic Compounds | p. 377 |
Introduction | p. 377 |
Catalytic Incineration | p. 379 |
Halogenated Hydrocarbons | p. 383 |
Food Processing | p. 390 |
Wood Stoves | p. 392 |
Process Design | p. 394 |
Deactivation | p. 394 |
Regeneration of Deactivated Catalysts | p. 395 |
References | p. 399 |
Questions | p. 401 |
Reduction of NOx | p. 403 |
Introduction | p. 403 |
Nonselective Catalytic Reduction of NOx | p. 404 |
Selective Catalytic Reduction of NOx | p. 407 |
Commercial Experience | p. 417 |
Nitrous Oxide (N2O) | p. 427 |
Catalytically Supported Thermal Combustion | p. 429 |
References | p. 434 |
Questions | p. 439 |
Carbon Monoxide and Hydrocarbon Abatement from Gas Turbines | p. 440 |
Introduction | p. 440 |
Catalyst for CO Abatement | p. 441 |
Non-Methane Hydrocarbon (NMHC) Removal | p. 443 |
Oxidation of Reactive Hydrocarbons | p. 444 |
Oxidation of Unreactive Light Paraffins | p. 445 |
Catalyst Deactivation | p. 447 |
References | p. 448 |
Questions | p. 449 |
Small Engines | p. 450 |
Introduction | p. 450 |
Emissions | p. 450 |
EPA Regulations | p. 451 |
Catalyst for Handheld and Nonhandheld Engines | p. 455 |
Catalyst Durability | p. 463 |
References | p. 464 |
Questions | p. 466 |
New And Emerging Technologies | p. 467 |
Ambient Air Cleanup | p. 469 |
Introduction | p. 469 |
PremairĀ® Catalyst Systems | p. 470 |
Other Approaches | p. 478 |
References | p. 479 |
Questions | p. 481 |
Fuel Cells and Hydrogen Generation | p. 482 |
Introduction | p. 482 |
Low-Temperature PEM Fuel Cell Technology | p. 488 |
The Ideal Hydrogen Economy | p. 495 |
Conventional Hydrogen Generation | p. 496 |
Hydrogen Generation from Natural Gas for PEM Fuel Cells | p. 499 |
Other Fuel Cell Systems | p. 505 |
References | p. 511 |
Questions | p. 517 |
Index | p. 518 |
Table of Contents provided by Ingram. All Rights Reserved. |
An electronic version of this book is available through VitalSource.
This book is viewable on PC, Mac, iPhone, iPad, iPod Touch, and most smartphones.
By purchasing, you will be able to view this book online, as well as download it, for the chosen number of days.
Digital License
You are licensing a digital product for a set duration. Durations are set forth in the product description, with "Lifetime" typically meaning five (5) years of online access and permanent download to a supported device. All licenses are non-transferable.
More details can be found here.
A downloadable version of this book is available through the eCampus Reader or compatible Adobe readers.
Applications are available on iOS, Android, PC, Mac, and Windows Mobile platforms.
Please view the compatibility matrix prior to purchase.