Density Ratio Estimation in Machine Learning

by
Format: Hardcover
Pub. Date: 2012-02-20
Publisher(s): Cambridge University Press
List Price: $176.55

Buy New

Usually Ships in 8 - 10 Business Days.
$168.14

Rent Textbook

Select for Price
There was a problem. Please try again later.

Used Textbook

We're Sorry
Sold Out

eTextbook

We're Sorry
Not Available

How Marketplace Works:

  • This item is offered by an independent seller and not shipped from our warehouse
  • Item details like edition and cover design may differ from our description; see seller's comments before ordering.
  • Sellers much confirm and ship within two business days; otherwise, the order will be cancelled and refunded.
  • Marketplace purchases cannot be returned to eCampus.com. Contact the seller directly for inquiries; if no response within two days, contact customer service.
  • Additional shipping costs apply to Marketplace purchases. Review shipping costs at checkout.

Summary

Machine learning is an interdisciplinary field of science and engineering that studies mathematical theories and practical applications of systems that learn. This book introduces theories, methods and applications of density ratio estimation, which is a newly emerging paradigm in the machine learning community. Various machine learning problems such as non-stationarity adaptation, outlier detection, dimensionality reduction, independent component analysis, clustering, classification and conditional density estimation can be systematically solved via the estimation of probability density ratios. The authors offer a comprehensive introduction of various density ratio estimators including methods via density estimation, moment matching, probabilistic classification, density fitting and density ratio fitting as well as describing how these can be applied to machine learning. The book provides mathematical theories for density ratio estimation including parametric and non-parametric convergence analysis and numerical stability analysis to complete the first and definitive treatment of the entire framework of density ratio estimation in machine learning.

Table of Contents

Density Ratio Approach to Machine Learning:
Introduction
Methods of Density Ratio Estimation:
Density estimation
Moment matching
Probabilistic classification
Density fitting
Density-ratio fitting
Unified framework
Direct density-ratio estimation with dimensionality reduction
Applications of Density Ratios in Machine Learning:
Importance sampling
Distribution comparison
Mutual information estimation
Conditional probability estimation
Theoretical Analysis of Density Ratio Estimation:
Parametric convergence analysis
Non-parametric convergence analysis
Parametric two-sample test
Non-parametric numerical stability analysis
Conclusions:
Conclusions and future directions
Table of Contents provided by Publisher. All Rights Reserved.

An electronic version of this book is available through VitalSource.

This book is viewable on PC, Mac, iPhone, iPad, iPod Touch, and most smartphones.

By purchasing, you will be able to view this book online, as well as download it, for the chosen number of days.

Digital License

You are licensing a digital product for a set duration. Durations are set forth in the product description, with "Lifetime" typically meaning five (5) years of online access and permanent download to a supported device. All licenses are non-transferable.

More details can be found here.

A downloadable version of this book is available through the eCampus Reader or compatible Adobe readers.

Applications are available on iOS, Android, PC, Mac, and Windows Mobile platforms.

Please view the compatibility matrix prior to purchase.