Introduction |
|
1 An Introduction to Tensors |
|
|
|
3 | (80) |
|
|
3 | (4) |
|
1.2 Fundamentals of Differential Geometry |
|
|
7 | (3) |
|
1.3 Tensor Fields — A Mathematical Concept |
|
|
10 | (3) |
|
|
13 | (4) |
Part I Feature Detection with Tensors |
|
|
2 Adaptive Structure Tensors and their Applications |
|
|
|
T. Brox, R. van den Boomgaard, F. Lauze, J. van de Weijer, J. Weickert, P. Kornprobst |
|
|
17 | (32) |
|
|
17 | (3) |
|
2.2 Data-adaptive Structure Tensors |
|
|
20 | (8) |
|
2.3 Optic Flow Estimation |
|
|
28 | (9) |
|
|
37 | (2) |
|
|
39 | (4) |
|
|
43 | (1) |
|
|
44 | (5) |
|
3 On the Concept of a Local Greyvalue Distribution and the Adaptive Estimation of a Structure Tensor |
|
|
|
|
49 | (14) |
|
|
49 | (1) |
|
3.2 Greyvalue Structure Tensor of a Gaussian Bell |
|
|
50 | (3) |
|
3.3 Weighted Average of the Hessian |
|
|
53 | (2) |
|
3.4 Determination of Parameters of a Gaussian Bell |
|
|
55 | (1) |
|
|
56 | (4) |
|
|
60 | (3) |
|
4 Low-level Feature Detection Using the Boundary Tensor |
|
|
|
|
63 | (20) |
|
|
63 | (3) |
|
|
66 | (2) |
|
4.3 Analysis of the Boundary Tensor as a Quadratic Filter |
|
|
68 | (3) |
|
4.4 Efficient Computation of the Boundary Tensor |
|
|
71 | (2) |
|
|
73 | (3) |
|
|
76 | (2) |
|
|
78 | (5) |
Part II Diffusion Tensor Imaging |
|
|
5 An Introduction to Computational Diffusion MRI: the Diffusion Tensor and Beyond |
|
|
|
|
83 | (24) |
|
|
83 | (2) |
|
5.2 Diffusion-Weighted MRI |
|
|
85 | (3) |
|
5.3 Diffusion MRI Reconstruction Algorithms |
|
|
88 | (10) |
|
|
98 | (2) |
|
|
100 | (3) |
|
|
103 | (4) |
|
6 Random Noise in Diffusion Tensor Imaging, its Destructive Impact and Some Corrections |
|
|
|
K.R. Hahn, S. Prigarin, S. Heim, K. Hasan |
|
|
107 | (14) |
|
|
107 | (1) |
|
|
108 | (5) |
|
6.3 Corrections of Noise Effects |
|
|
113 | (4) |
|
|
117 | (1) |
|
|
117 | (4) |
|
7 An Introduction to Visualization of Diffusion Tensor Imaging and Its Applications |
|
|
|
A. Vilanova, S. Zhang, G. Kindlmann, D. Laidlaw |
|
|
121 | (34) |
|
|
121 | (2) |
|
7.2 Diffusion Tensor Imaging |
|
|
123 | (2) |
|
|
125 | (14) |
|
|
139 | (6) |
|
|
145 | (2) |
|
7.6 Summary and Conclusions |
|
|
147 | (1) |
|
|
148 | (7) |
|
8 Anatomy-Based Visualizations of Diffusion Tensor Images of Brain White Matter |
|
|
|
J.C. Gee, H. Zhang, A. Dubb, B.B. Avants, P.A. Yushkevich, J.T. Duda |
|
|
155 | (10) |
|
|
155 | (2) |
|
|
157 | (2) |
|
|
159 | (3) |
|
|
162 | (3) |
|
9 Variational Regularization of Multiple Diffusion Tensor Fields |
|
|
|
O. Pasternak, N. Sochen, Y. Assaf |
|
|
165 | (12) |
|
|
165 | (1) |
|
9.2 Variational Approach for DTI Denoising |
|
|
166 | (3) |
|
9.3 Multiple Tensor Variational Framework for Fitting and Regularizing Diffusion Weighted Images |
|
|
169 | (3) |
|
|
172 | (2) |
|
|
174 | (1) |
|
|
175 | (2) |
|
10 Higher Rank Tensors in Diffusion MRI |
|
|
|
E. Özarslan, B.C. Vemuri, T.H. Mareci |
|
|
177 | (14) |
|
|
177 | (3) |
|
10.2 Quantification of Anisotropy from Higher Rank Tensors |
|
|
180 | (4) |
|
10.3 Fiber Orientations Implied by Higher Rank Tensors |
|
|
184 | (3) |
|
|
187 | (4) |
Part III Visualization of Tensor Fields |
|
|
11 Strategies for Direct Visualization of Second-Rank Tensor Fields |
|
|
|
|
191 | (24) |
|
|
191 | (4) |
|
11.2 Visualization via Integral Manifolds |
|
|
195 | (7) |
|
11.3 Vertex-Based Visualization Methods |
|
|
202 | (8) |
|
|
210 | (3) |
|
|
213 | (2) |
|
12 Tensor Invariants and their Gradients |
|
|
|
|
215 | (10) |
|
12.1 Background and Notation |
|
|
215 | (1) |
|
12.2 From Principal Invariants to Eigenvalues |
|
|
216 | (1) |
|
|
217 | (2) |
|
12.4 Anatomical Significance of Eigenvalue Statistics |
|
|
219 | (1) |
|
12.5 Edge Detection with Invariant Gradients |
|
|
220 | (1) |
|
12.6 Application to Diffusion Tensor Images |
|
|
221 | (2) |
|
|
223 | (1) |
|
|
223 | (2) |
|
13 Visualizing the Topology of 2D Tensor Fields |
|
|
|
X. Tricoehe, X. Zheng, A. Pang |
|
|
225 | (16) |
|
13.1 Fundamental Notions of Two-Dimensional Tensor Field Topology |
|
|
225 | (8) |
|
13.2 Basic Topology Visualization |
|
|
233 | (2) |
|
13.3 Topology Simplification |
|
|
235 | (2) |
|
|
237 | (2) |
|
|
239 | (1) |
|
|
240 | (1) |
|
|
|
X. Zheng, X. Tricoche, A. Pang |
|
|
241 | (16) |
|
|
241 | (2) |
|
14.2 Dimensionality of Degenerate Features |
|
|
243 | (1) |
|
14.3 Implicit Function Approach |
|
|
244 | (4) |
|
|
248 | (3) |
|
14.5 Topological Feature Lines |
|
|
251 | (1) |
|
|
251 | (3) |
|
|
254 | (1) |
|
|
255 | (1) |
|
|
256 | (1) |
|
15 Locating Closed Hyperstreamlines in Second Order Tensor Fields |
|
|
|
T. Wischgoll and J. Meyer |
|
|
257 | (12) |
|
|
257 | (2) |
|
15.2 Mathematical Background |
|
|
259 | (1) |
|
15.3 Detection of Closed Hyperstreamlines |
|
|
260 | (3) |
|
|
263 | (2) |
|
|
265 | (1) |
|
|
266 | (3) |
|
16 Tensor Field Visualization Using a Metric Interpretation |
|
|
|
I. Hotz, L. Feng, H. Hagen, B. Hamann. K. Joy |
|
|
269 | (16) |
|
|
269 | (1) |
|
|
270 | (1) |
|
|
271 | (6) |
|
16.4 Results and Conclusions |
|
|
277 | (3) |
|
|
280 | (5) |
Part IV Tensor Field Transformations |
|
|
17 Symmetric Positive-Definite Matrices: From Geometry to Applications and Visualization |
|
|
|
M. Moakher and P.G. Batchelor |
|
|
285 | (14) |
|
|
285 | (1) |
|
17.2 Geometry of the Space of SPD Matrices |
|
|
286 | (3) |
|
|
289 | (2) |
|
|
291 | (4) |
|
|
295 | (2) |
|
|
297 | (2) |
|
18 Continuous Tensor Field Approximation of DT-MRI data |
|
|
|
S. Pajevic, A. Aldroubi, P.J. Basser |
|
|
299 | (16) |
|
|
299 | (2) |
|
18.2 Continuous Approximation and Representation of Discrete Tensor Data |
|
|
301 | (1) |
|
18.3 B-Spline Approximation |
|
|
302 | (3) |
|
18.4 Non-Uniform Rational B-Splines (NURBS) |
|
|
305 | (4) |
|
18.5 B-spline vs NURBS Comparison on Curvature Estimation |
|
|
309 | (1) |
|
18.6 Discussion and Conclusion |
|
|
310 | (2) |
|
|
312 | (3) |
|
19 Tensor Field Interpolation with PDEs |
|
|
|
|
315 | (12) |
|
|
315 | (1) |
|
19.2 Scalar Interpolation |
|
|
316 | (4) |
|
19.3 Tensor Interpolation |
|
|
320 | (3) |
|
|
323 | (1) |
|
|
324 | (3) |
|
20 Diffusion-Tensor Image Registration |
|
|
|
J.C. Gee and D.C. Alexander |
|
|
327 | (18) |
|
|
327 | (1) |
|
|
328 | (5) |
|
|
333 | (3) |
|
20.4 Review of Current DT-MRI Registration Literature |
|
|
336 | (2) |
|
|
338 | (2) |
|
|
340 | (5) |
Part V Image Processing Methods for Tensor Fields |
|
|
21 Tensor-Valued Median Filtering and M-Smoothing |
|
|
|
M. Welk, C. Feddern, B. Burgeth, J. Weickert |
|
|
345 | (12) |
|
|
345 | (1) |
|
21.2 Scalar-Valued Median Filters |
|
|
346 | (1) |
|
21.3 Tensor-Valued Median Filters |
|
|
347 | (2) |
|
21.4 Mid-Range Filters and M-Smoothers |
|
|
349 | (2) |
|
|
351 | (1) |
|
|
352 | (3) |
|
|
355 | (1) |
|
|
355 | (2) |
|
22 Mathematical Morphology on Tensor Data Using the Loewner Ordering |
|
|
|
B. Burgeth,, M. Welk, C. Feddern, J. Weickert |
|
|
357 | (12) |
|
|
357 | (2) |
|
22.2 Brief Review of Scalar Morphology |
|
|
359 | (1) |
|
22.3 Extremal Matrices in the Loewner Ordering |
|
|
360 | (2) |
|
22.4 Experimental Results |
|
|
362 | (4) |
|
|
366 | (1) |
|
|
367 | (2) |
|
23 A Local Structure Measure for Anisotropic Regularization of Tensor Fields |
|
|
|
E. Suárez-Santana, M.A. Rodriguez-Florido, C. Castaño-Moraga, C.-F. Westin, J. Ruiz-Alzola |
|
|
369 | (12) |
|
|
369 | (1) |
|
23.2 The Structure Tensor |
|
|
370 | (3) |
|
23.3 Anisotropic Tensor Field Filtering |
|
|
373 | (2) |
|
|
375 | (5) |
|
|
380 | (1) |
|
24 Tensor Field Regularization using Normalized Convolution and Markov Random Fields in a Bayesian Framework |
|
|
|
C.-F. Westin, M. Martin-Fernandez, C. Alberola-Lopez, J. Ruiz-Alzoln,, H. Knutsson |
|
|
381 | (18) |
|
|
381 | (1) |
|
24.2 Normalized Convolution |
|
|
382 | (4) |
|
24.3 Bayesian Regularization using Multivariate Gaussian Markov Random Fields |
|
|
386 | (11) |
|
|
397 | (1) |
|
|
397 | (2) |
|
25 PDEs for Tensor Image Processing |
|
|
|
J. Weickert, C. Feddern, M. Welk, B. Burgeth, T. Brox |
|
|
399 | (16) |
|
|
399 | (1) |
|
25.2 Structure Analysis of Tensor-Valued Data |
|
|
400 | (2) |
|
|
402 | (4) |
|
25.4 Regularisation Methods |
|
|
406 | (1) |
|
25.5 Mean Curvature Motion |
|
|
407 | (1) |
|
|
408 | (1) |
|
25.7 Geodesic Active Contour Models |
|
|
409 | (3) |
|
25.8 Summary and Conclusions |
|
|
412 | (1) |
|
|
412 | (3) |
Appendix Color Plates |
|
415 | (58) |
Index |
|
473 | |